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ABSTRACT 

Ribosomes, acting as the cellular factories for protein production, are essential for all living 

organisms. Ribosomes are composed of both proteins and RNAs and are established through 

the coordination of several steps, including transcription, maturation of ribosomal RNA 

(rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for 

ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-

associated proteins, and assembly factors, are tightly regulated by various post-translational 

modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets 

lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, 

rRNA processing, and ribosome assembly. The tight control of SUMOylation affects 

functions and locations of substrates. This review summarizes current studies and recent 

progress of SUMOylation-mediated regulation of ribosome biogenesis. 
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INTRODUCTION 

Ribosomes are macromolecular complexes consisted of both proteins and RNAs. They are 

cellular factories for the translation of mRNAs into corresponding proteins (1, 2). In most 

eukaryotes, individual ribosomal proteins synthesized in the cytoplasm are reimported into 

the nucleus, while ribosomal RNA (rRNA) is synthesized in a nucleolus, a discrete 

compartment within the nucleus (3). The coordination between more than 200 assembly 

factors and many small nucleolar RNAs (snoRNAs) is essential for ribosome biogenesis and 

leads to the build-up of the 40S and 60S pre-ribosomal particles. The 40S particle contains 

distinct ribosomal proteins with 18S rRNA, whereas the 60S particle contains 28S, 5.8S, and 

5S rRNA. Both subunits are exported to the cytoplasm for final maturation, and the 80S 

ribosome is eventually assembled from the 40S and 60S subunits to initiate protein synthesis 

(4). The ribosome biogenesis pathway requires the precise regulation of multiple steps, 

including transcription as well as protein assembly and transport. The transcriptional control 

of rRNA and ribosomal protein-encoding genes is the first rate-limiting step in biosynthesis. 

It is regulated by diverse pathways, such as PI3K/AKT/mTOR, RAS/RAF/MEK, p53, and 

Myc, which act as master regulators of cell proliferation (5-8). Subsequently, several 

regulatory factors engage in various steps during the successful maturation of pre-rRNA 

transcripts and ribosome assembly and export; these processes are tightly regulated by 

various post-translational modifications, including the small ubiquitin-related modifier 

(SUMO) pathway (9). Recent investigations utilizing biochemical and genome-wide analyses 

have significantly contributed toward our understanding of SUMO modification in ribosome 

synthesis and maturation; therefore, in the present review, we provide an overview of the 

newly discovered functions of SUMO in ribosome biogenesis. 
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SUMO is an evolutionarily conserved protein that plays important roles in diverse cellular 

processes, including DNA replication, transcription, translation, viral infection, stress 

response, and ribosome biogenesis (10-14). Humans have five genes that encode SUMO 

paralogs, SUMO-1 to SUMO-5, while yeast Saccharomyces cerevisiae expresses a single 

SUMO ortholog, Smt3, sharing 48% identity and 75% similarity with SUMO-1 (15, 16) 

(Figure 1A). SUMO-2 and SUMO-3 are almost identical, while SUMO-2/3 shares about 

50% similarity with SUMO-1 (17). SUMO proteins are initially translated as precursors with 

C-terminal extension, and their C-terminal tails are then cleaved by SUMO-specific proteases 

to yield mature proteins with a pair of Gly residues (18). However, there is no in vivo 

experimental evidence for the ligation capacity of SUMO-4 or SUMO-5 (16, 19). The mature 

form of SUMO protein activated by SUMO-activating enzyme unit 1SAE1/SAE2 

(Aos1/Uba2 in S. cerevisiae) is transferred to a cysteine in the Ubc9 SUMO-conjugating E2 

enzyme, followed by the transfer of SUMO by SUMO E3 ligases from E2 to lysine residue(s) 

on substrate proteins (20) (Figure 1B). In addition, SUMO can be assembled into polymeric 

chains on substrates, and such SUMO chains are disassembled by SUMO-specific proteases 

(SENPs) (18). Six SENPs (Ulp1 and Ulp2 in S. cerevisiae) have been studied for their 

functions and localizations in humans, but the recently discovered three SENPs have not been 

extensively investigated. SUMO conjugation can alter the interaction between its substrate 

and binding partner proteins, which possess one or more SUMO-interaction motifs (SIMs) 

for recognizing SUMO-conjugated proteins, maintaining protein stability, or bringing 

conformational changes in target proteins (21). 
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Recent advances in molecular techniques and quantitative proteomics have revealed several 

interesting SUMO target proteins. Pioneer studies have been conducted in S. cerevisiae (22-

26). Although SUMO substrates have been found in all cellular compartments, amounts of 

SUMO-conjugated proteins are much higher in the nucleus than in other regions. This finding 

is consistent with the extremely concentrated SUMO and SUMO pathway enzymes in the 

nucleus. Interestingly, all yeast studies have revealed proportionally high numbers of 

ribosomal proteins and assembly factors as SUMO targets, suggesting that SUMO is closely 

linked to ribosome biogenesis and remodeling. Furthermore, the SUMOylated ribosome itself 

and its regulators are also observed in proteomic analyses for the detection of targets of all 

three active SUMO isoforms (SUMO-1 to -3) in human cells or stem cells (27-34). Although 

factors involved in ribosome biogenesis are major targets of the SUMO pathway, how such 

SUMO modifications affect ribosome development and the mechanism underlying the 

regulation of SUMO conjugation levels of ribosomes are yet unknown. 

 

SUMO promotes expression of ribosomal genes and rRNA 

Primary target proteins of SUMO are transcription factors and chromatin-associated proteins 

in eukaryotes (35, 36). It was initially thought that SUMO mainly would suppress gene 

transcription because it either blocked the function of transcription activators or facilitated the 

function of transcription repressors (37). However, recent investigations have uncovered its 

more diverse roles in co-transcriptional processes, including transcription activation and 

chromatin remodeling (35). In particular, SUMO is highly enriched in genes encoding 

ribosomal proteins and rRNA in human cells, and inhibition of SUMOylation leads to 

expression upregulation of these genes, implying that SUMO normally plays a role in 

limiting their expression (38) (Figure 2). Human PIAS SUMO E3 ligases are indirectly 

involved in the repression of rRNA transcription by suppressing the expression of upstream UN
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binding factor and c-Myc, which are required for rRNA transcription (39). On the other hand, 

a study in S. cerevisiae has reported conflicting results on the correlation between SUMO and 

ribosomal protein expression (40). SUMO most prominently occurs at ribosomal protein 

genes and positively regulates their expression in S. cerevisiae. In particular, SUMOylation 

of the transcription factor Rap1 leads to the recruitment of basal transcription machinery 

transcription factor IID (TFIID) for promoting transcription of ribosomal protein genes. In 

addition, SUMO protease Ulp2 is strongly associated with genes encoding ribosomal protein 

snoRNA as well as rRNA, and loss of Ulp2 expression leads to upregulation of their 

expression. This finding is consistent with the function of SUMO as a transcription activator 

(41, 42). Ulp2 can govern the level of SUMO conjugation and rDNA binding of Net1, Tof2, 

and Fob1, which are required for rDNA silencing (43). Histone SUMOylation has diverse 

roles in transcriptional regulation and is highly enriched at ribosomal protein and rDNA loci 

(44, 45). However, its function in ribosome biogenesis has not been reported yet. 

 

SUMO affects rRNA processing 

rRNA processing is essential for ribosome biogenesis. It is mediated by small nucleolar 

ribonucleoprotein complexes (snoRNPs) composed of snoRNAs and nucleolar proteins (46). 

snoRNAs are classified into two groups, box C/D snoRNAs responsible for 2′-O-ribose 

methylation and box H/ACA snoRNAs for mediating pseudouridylation. SUMOylation of the 

core box C/D snoRNP protein Nop58 is imperative for its association with snoRNAs, 

nucleolar positioning of snoRNAs, and proper snoRNP assembly, and blockade of SUMO 

conjugation to Nop58 facilitates proteasome-dependent protein degradation in the 

nucleoplasm (47). SUMOylation of the box H/ACA snoRNP protein Nhp2 is also involved in 

snoRNP biogenesis in the nucleoplasm (47). SENP3 can directly interact with 

B23/nucleophosmin, involved in ribosome biogenesis and export, and its loss leads to a UN
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defect in 28S rRNA maturation (48). Depletion of SENP5 has similar but milder effects on 

rRNA processing (49). In addition, USP36 deubiquitinase can physically interact with 

SUMO-2 and Ubc9 and promote SUMO conjugation with Nop56, Nop58, Nph2, and DKC1, 

eventually facilitating rRNA processing and translation (50). Cellular level of RNA exosome 

EXOSC10, required for 3′ pre-ribosomal RNA processing, is regulated by SUMO-1 

conjugation to EXOSC10 (51). Taken together, these findings suggest that dynamic SUMO 

modification of nucleolar proteins is one of the critical factors for snoRNP-mediated rRNA 

modifications (Figure 2). 

 

SUMO guides ribosome assembly 

During ribosome biogenesis, 90S pre-ribosomal particles are established in the nucleolus and 

then split into 60S and 40S pre-ribosomes. These pre-ribosomal subunits are transported into 

the cytoplasm for final maturation (52). Human SENP3 is co-purified with PELP1, TEX10, 

WDR18, and LAS1L. SENP3-mediated control of SUMO conjugation level of PELP1 and 

LAS1L is essential for the maturation of rRNA and nucleolar export of 60S pre-ribosomal 

particles (53-55). SUMO can negatively affect conjugation of NEDD8, another ubiquitin-like 

protein, to human Rpl11, and facilitate the translocation of Rpl11 from nucleoli (56). Rps3, a 

DNA repair endonuclease, is also a substrate of the SUMO pathway that increases the 

stability of Rps3 protein (57). SUMOylation of Rpl22e is important for nucleoplasmic 

distribution of Rpl22 in Drosophila meiotic spermatocytes (58). SUMO protease SMT7-

mediated control of SUMO levels on Rpl30 might affect various cellular processes, including 

cell division in Chlamydomonas reinhardtii (59). In S. cerevisiae, an additional copy of the 

UBA2 gene complements abnormal nucleolar accumulation of the ribosomal 60S subunit 

Rpl25 in a rix16-1 mutant strain, in which the export of the pre-60S ribosomal subunit is 

impaired and mutations in ubc9, ulp1, and smt3 causes export defects of pre-60S particles UN
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(60). In particular, Ulp1 genetically interacts with nuclear export factor Mtr2 in the pre-60S 

export pathway. However, their exact correlation has not been reported yet. Taken together, 

these findings indicate that the SUMO pathway ensures the fidelity of pre-ribosome import 

into the cytoplasm and routes ribosome maturation via successful assembly of ribosome 

subsets (Figure 2).  

 

CONCLUSION 

SUMOylation is known to play critical roles in ribosome biogenesis, and regulation of this 

modification is associated with gene expression, nuclear import, and assembly of ribosomal 

subunits. However, the ultimate and detailed functions of the SUMO pathway in ribosome 

establishment have remained unclear until recently. Here, we briefly summarize recent 

observations of how the SUMO pathway is involved in ribosome biogenesis. Several 

ribosomal proteins themselves and various factors required for ribosome assembly are 

substrates of SUMOylation. These SUMO modifications are tightly regulated by SUMO-

specific proteases, leading to regulation of gene expression, localization, and function as well 

as proteolytic control of target proteins during ribosome maturation. Functionally 

healthy ribosomes are vital for cell survival, and several mutations in ribosomes or ribosome 

assembly factors have been found to be lethal (61, 62). Especially, specific defects in 

ribosome biogenesis or function could cause various clinical abnormalities, including skin 

and bone marrow failure syndromes such as X-linked dyskeratosis congenita and 

Schwachman-Diamond syndrome (63, 64). Thus, studying SUMO functions in ribosome 

biogenesis and activities might provide clue to develop new therapies and drug targets for 

human disorders of ribosome dysfunction. 
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FIGURE LEGENDS 

Figure 1. Alignment of SUMO protein sequences and SUMO pathway diagram 

A. Sequence alignment of human SUMO-1 through SUMO-5 with yeast SUMO (Smt3) using 

Molecular Evolutionary Genetic Analysis software (MEGA, https://www.megasoftware.net/). 

Different letters and colors indicate different amino acids, and asterisks denote amino acids 

conserved among all SUMO proteins. 

B. Diagram of the SUMOylation cycle. The precursor form of SUMO is processed by SENP 

proteases to create a mature form with a C-terminal Gly-Gly (GG) motif. Mature SUMO is 

ATP-dependent and activated by heterodimeric E1 SUMO-activating enzymes, SAE1 and 

SAE2, through a catalytic cysteine (C) residue in SAE2. Next, SUMO is transferred to the C 

residue of the E2 SUMO-conjugating enzyme (Ubc9), resulting in the conjugation of SUMO 

to the lysine (K) residues of the substrate protein with the aid of an E3 SUMO ligase. Finally, 

SENPs can deconjugate SUMO from the substrate or edit SUMO chains, after which SUMO 

is recycled through the conjugation event. 

 

Figure 2. SUMOylation regulates ribosome biogenesis 

SUMOylation and deSUMOylation are highly dynamic cellular processes, and their versatile 

control is essential for ribosome biogenesis. First, several transcription factors, including 

yeast Rap1, are major substrates of the SUMO pathway. Their SUMOylation regulates the 

expression of genes encoding ribosomal proteins (RPs) and rRNAs (components of 

ribosomes) and snoRNAs (required for rRNA maturation). While the association of Net1, 

Tof2, and Fob1, which are required for rDNA silencing, with rRNA-encoding rDNA locus is 

regulated by their SUMOylation, SUMOylated histones are substantially located at RP genes 

and rDNA regions. However, the role of histone SUMOylation in these regions remains 

unelucidated. Second, the control of SUMOylation of snoRNP proteins, Nph2, DKC1, Nop56, UN
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and Nop58, the RNA exosome EXOSC10, and B23/nucleophosmin is required for rRNA 

maturation. Finally, ribosomal proteins and their assembly factors, including LAS1L and 

PELP1, are common targets of SUMOylation. However, the timing of SUMOylation required 

for successful ribosome assembly and export remains unknown. The illustration presents 

relevant components but not precise physical interactions between proteins or event orders. 
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